AIUM Practice Parameter for the Performance of an

Ultrasound Examination of the Abdomen and/or Retroperitoneum

Parameter developed in conjunction with the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Radiologists in Ultrasound (SRU).

© 2012 by the American Institute of Ultrasound in Medicine
The American Institute of Ultrasound in Medicine (AIUM) is a multidisciplinary association dedicated to advancing the safe and effective use of ultrasound in medicine through professional and public education, research, development of parameters, and accreditation. To promote this mission, the AIUM is pleased to publish, in conjunction with the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Radiologists in Ultrasound (SRU), this AIUM Practice Parameter for the Performance of an Ultrasound Examination of the Abdomen and/or Retroperitoneum. We are indebted to the many volunteers who contributed their time, knowledge, and energy to bringing this document to completion.

The AIUM represents the entire range of clinical and basic science interests in medical diagnostic ultrasound, and, with hundreds of volunteers, the AIUM has promoted the safe and effective use of ultrasound in clinical medicine for more than 50 years. This document and others like it will continue to advance this mission.

Practice parameters of the AIUM are intended to provide the medical ultrasound community with parameters for the performance and recording of high-quality ultrasound examinations. The parameters reflect what the AIUM considers the minimum criteria for a complete examination in each area but are not intended to establish a legal standard of care. AIUM-accredited practices are expected to generally follow the parameters with recognition that deviations from these parameters will be needed in some cases, depending on patient needs and available equipment. Practices are encouraged to go beyond the parameters to provide additional service and information as needed.
I. Introduction

The clinical aspects contained in specific sections of this parameter (Introduction, Indications/Contraindications, Specifications for Individual Examinations, and Equipment Specifications) were developed collaboratively by the American Institute of Ultrasound in Medicine (AIUM), the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Radiologists in Ultrasound (SRU). Qualifications and Responsibilities of Personnel, Written Request for the Examination, Documentation, and Quality Control and Improvement, Safety, Infection Control, and Patient Education vary among the organizations and are addressed by each separately.

This parameter has been developed to assist practitioners performing ultrasound studies of the abdomen and/or retroperitoneum. Sonography is a proven and useful procedure for the evaluation of many structures within these anatomic areas. Depending on the clinical indications, an examination may include the entirety of the abdomen and/or retroperitoneum, a single organ, or several organs. A combination of structures may be imaged because of location (eg, upper abdominal scan and right upper quadrant organs) or function (eg, biliary system [liver, gallbladder, and bile ducts] and both kidneys). For some patients, more focused examinations may be appropriate for evaluating specific clinical indications or to follow up a known abnormality. In some cases, additional and/or specialized examinations may be necessary (eg, spectral, color, and/or power Doppler imaging). Although it is not possible to detect every abnormality using an ultrasound examination of the abdomen and/or retroperitoneum, adherence to the following parameter will maximize the probability of detecting abnormalities.

Throughout this parameter, references to Doppler evaluation may include spectral, color, or power Doppler imaging individually or in any combination. Whenever a long-axis view is indicated, it could be either a sagittal or coronal plane.

II. Qualifications and Responsibilities of Personnel


III. Indications/Contraindications

Indications for an ultrasound examination of the abdomen and/or retroperitoneum include but are not limited to:

A. Abdominal, flank, and/or back pain.
B. Signs or symptoms that may be referred from the abdominal and/or retroperitoneal regions such as jaundice or hematuria.
C. Palpable abnormalities such as an abdominal mass or organomegaly.
D. Abnormal laboratory values or abnormal findings on other imaging examinations suggestive of abdominal and/or retroperitoneal pathology.
E. Follow-up of known or suspected abnormalities in the abdomen and/or retroperitoneum.
F. Search for metastatic disease or an occult primary neoplasm.
G. Evaluation of suspected congenital abnormalities.
H. Abdominal trauma.
I. Pretransplantation and posttransplantation evaluation.
J. Planning for and guiding an invasive procedure.
K. Searching for the presence of free or loculated peritoneal and/or retroperitoneal fluid.
L. Suspicion of hypertrophic pyloric stenosis or intussusceptions.
M. Evaluation of a urinary tract infection.

An abdominal and/or retroperitoneal ultrasound examination should be performed when there is a valid medical reason. There are no absolute contraindications.

IV. Written Request for the Examination

The written or electronic request for an ultrasound examination should provide sufficient information to allow for the appropriate performance and interpretation of the examination.

The request for the examination must be originated by a physician or another appropriately licensed health care provider or under the physician’s or provider’s direction. The accompanying clinical information should be provided by a physician or another appropriate health care provider familiar with the patient’s clinical situation and should be consistent with relevant legal and local health care facility requirements.

V. Specifications for Individual Examinations

Spectral, color, and power Doppler imaging may be useful to differentiate vascular from non-vascular structures in any location. Measurements should be considered for any abnormal area.

1. Liver

The examination of the liver should include long-axis and transverse views. The liver parenchyma should be evaluated for focal and/or diffuse abnormalities. If possible, the echogenicity of the liver should be compared with that of the right kidney. In addition, the following should be imaged:

a. The major hepatic and perihepatic vessels, including the inferior vena cava (IVC), the hepatic veins, the main portal vein, and, if possible, the right and left branches of the portal vein.
b. The hepatic lobes (right, left, and caudate) and, if possible, the right hemidiaphragm and the adjacent pleural space.

c. For vascular examinations of the native or transplanted liver, Doppler evaluation should be used to document blood flow characteristics and blood flow direction. The structures that may be examined include the main and intrahepatic arteries, the hepatic veins, the main and intrahepatic portal veins, the intrahepatic portion of the IVC, collateral venous pathways, and transjugular intrahepatic portosystemic shunt stents.

2. Gallbladder and Biliary Tract

A routine gallbladder examination should be conducted on an adequately distended gallbladder whenever possible. In most cases, fasting before elective examination will permit adequate distension of a normally functioning gallbladder. In infants and children, fasting may not be necessary in all cases. The gallbladder evaluation should include long-axis and transverse views obtained in the supine position. Other positions such as left lateral decubitus, erect, and prone may be helpful to evaluate the gallbladder and its surrounding areas completely. Measurements may aid in determining gallbladder wall thickening. If the patient presents with pain, tenderness to transducer compression should be assessed.

The intrahepatic ducts can be evaluated by obtaining views of the liver demonstrating the right and left branches of the portal vein. Doppler imaging may be used to differentiate hepatic arteries and portal veins from bile ducts. The intrahepatic and extrahepatic bile ducts should be evaluated for dilatation, wall thickening, intraluminal findings, and other abnormalities. The bile duct in the porta hepatis should be measured and documented. When visualized, the distal common bile duct in the pancreatic head should be evaluated.

3. Pancreas

Whenever possible, all portions of the pancreas—head, uncinate process, body, and tail—should be identified. Orally administered water or a contrast agent may afford better visualization of the pancreas. The following should be assessed in the examination of the pancreas:

a. Parenchymal abnormalities.

b. The distal common bile duct in the region of the pancreatic head.

c. The pancreatic duct for dilatation and any other abnormalities, with dilatation confirmed by measurement.

d. The peripancreatic region for adenopathy and/or fluid.

4. Spleen

Representative views of the spleen in long-axis and transverse projections should be obtained. Splenic length measurement may be helpful in assessing enlargement. Echogenicity of the left kidney should be compared to splenic echogenicity when possible. An attempt should be made to demonstrate the left hemidiaphragm and the adjacent pleural space.
5. Bowel

The bowel may be evaluated for wall thickening, dilatation, muscular hypertrophy, masses, vascularity, and other abnormalities. Sonography of the pylorus and surrounding structures may be indicated in evaluation of the vomiting infant. Graded compression sonography aids in the visualization of the appendix and other bowel loops. Measurements may aid in determining bowel wall thickening.20–26

6. Peritoneal Fluid

Evaluation for free or loculated peritoneal fluid should include documentation of the extent and location of any fluid identified.

For evaluating peritoneal spaces for bleeding after traumatic injury, particularly blunt trauma, the examination known as focused abdominal sonography for trauma (FAST, also known as focused assessment with sonography for trauma) may be performed.27 The objective of the abdominal portion of the FAST examination is to screen the abdomen for free fluid. Longitudinal and transverse plane images should be obtained in the right upper quadrant through the area of the liver with attention to fluid collections peripheral to the liver and in the subhepatic space. Longitudinal and transverse plane images should be obtained in the left upper quadrant through the area of the spleen with attention to fluid collections peripheral to the spleen. Longitudinal and transverse images should be obtained at the periphery of the left and right abdomen in the areas of the left and right paracolic gutters for evidence of free fluid. Longitudinal and transverse midline images of the pelvis are obtained to evaluate for free pelvic fluid. Analysis through a fluid-filled bladder (which if necessary can be filled through a Foley catheter, when possible) may help in evaluation of the pelvis.

7. Abdominal Wall

The examination should include images of the abdominal wall in the location of symptoms or signs. The relationship of any identified mass with the peritoneum should be demonstrated. Any defect in the peritoneum and abdominal wall musculature should be documented. The presence or absence of bowel, fluid, or other tissue contained within any abdominal wall defect should be noted. Images obtained in upright position and/or with use of the Valsalva maneuver may be helpful. Doppler examination may be useful to define the relationship of blood vessels with a detected mass.

8. Kidneys

An examination of native or transplanted kidneys should include long-axis and transverse views of the kidneys. The cortices and renal pelvises should be assessed. A maximum measurement of renal length should be recorded for both kidneys. Decubitus, prone, or upright positioning may provide better images of the native kidneys. When possible, renal echogenicity should be compared to the adjacent liver or spleen. The kidneys and perirenal regions should be assessed for abnormalities.28–35
For a vascular examination of native or transplanted kidneys, Doppler imaging can be used:

a. To assess renal arterial and venous patency.

b. To evaluate suspected renal artery stenosis. For this application, angle-adjusted measurements of the peak systolic velocity should be made proximally, centrally, and distally in the extrarenal portion of the main renal arteries when possible. The peak systolic velocity of the adjacent aorta should also be documented for calculating the renal to aortic peak systolic velocity ratio. Spectral Doppler evaluation of the intrarenal arteries may be of value as indirect evidence of proximal stenosis in the main renal artery.

c. For vascular examinations of transplanted kidneys, Doppler evaluation should be used to document vascular patency and blood flow characteristics. The structures that may be examined include the main renal artery and vein, arterial and venous anastomoses, the iliac artery and vein, and the intrarenal arteries.

9. Urinary Bladder and Adjacent Structures

When performing a complete ultrasound evaluation of the urinary tract, transverse and longitudinal images of the distended urinary bladder and its wall should be included, if possible. Bladder lumen or wall abnormalities should be noted. Dilatation or other distal ureteral abnormalities should be documented. Transverse and longitudinal scans may be used to demonstrate any postvoid residual, which may be quantitated and reported.

10. Adrenal Glands

When possible, usually in the neonate or young infant, long-axis and transverse images of the adrenal glands may be obtained. Normal adrenal glands are less commonly shown by ultrasound imaging in adults.

11. Aorta

Representative images of the aorta should be obtained. When evaluation of the aorta is specifically requested, see the AIUM Practice Parameter for the Performance of Diagnostic and Screening Ultrasound of the Abdominal Aorta.

12. Inferior Vena Cava

Representative images of the IVC should be obtained. Patency and abnormalities may be evaluated with Doppler imaging. Vena cava filters, interruption devices, and catheters may need to be localized with respect to the hepatic and/or renal veins.
VI. Documentation

Adequate documentation is essential for high-quality patient care. There should be a permanent record of the ultrasound examination and its interpretation. Images of all appropriate areas, both normal and abnormal, should be recorded. Variations from normal size should be accompanied by measurements. Images should be labeled with the patient identification, facility identification, examination date, and side (right or left) of the anatomic site imaged. An official interpretation (final report) of the ultrasound findings should be included in the patient’s medical record. Retention of the ultrasound examination should be consistent both with clinical needs and with relevant legal and local health care facility requirements.

Reporting should be in accordance with the AIUM Practice Parameter for Documentation of an Ultrasound Examination.

VII. Equipment Specifications

Abdomen and/or retroperitoneum sonographic studies should be conducted with real-time scanners, preferably using sector or linear transducers. The equipment should be adjusted to operate at the highest clinically appropriate frequency, realizing that there is a trade-off between resolution and beam penetration. For most preadolescent pediatric patients, mean frequencies of 5 MHz or greater are preferred, and in neonates and small infants a higher-frequency transducer is often necessary. For adults, mean frequencies between 2 and 5 MHz are most commonly used. When Doppler studies are performed, the Doppler frequency may differ from the imaging frequency. Image quality should be optimized while keeping total ultrasound exposure as low as reasonably achievable.

VIII. Quality Control and Improvement, Safety, Infection Control, and Patient Education

Policies and procedures related to quality control, patient education, infection control, and safety should be developed and implemented in accordance with the AIUM Standards and Guidelines for the Accreditation of Ultrasound Practices.

Equipment performance monitoring should be in accordance with the AIUM Standards and Guidelines for the Accreditation of Ultrasound Practices.

IX. ALARA Principle

The potential benefits and risks of each examination should be considered. The ALARA (as low as reasonably achievable) principle should be observed when adjusting controls that affect the acoustic output and by considering transducer dwell times. Further details on ALARA may be found in the AIUM publication Medical Ultrasound Safety, Third Edition.
Acknowledgments

This parameter was revised by the American Institute of Ultrasound in Medicine (AIUM) in collaboration with the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Radiologists in Ultrasound (SRU) according to the process described in the AIUM Clinical Standards Committee Manual.

Collaborative Committee: Members represent their societies in the initial and final revision of this parameter.

ACR
Beverly E. Hashimoto, MD, Chair
Sara J. Abramson, MD
Brian D. Coley, MD
Robert D. Harris, MD, MPH
Marta Hernanz-Schulman, MD
Beverley Newman, MD, BCh, BSc
Robert M. Sinow, MD, MD
Maryellen R. M. Sun, MD

AIUM Clinical Standards Committee
Leslie Scutt, MD, Chair
Joseph Wax, MD, Vice Chair
Harris L. Cohen, MD
Lin Diacon, MD, RDMS, RPVI
J. Christian Fox, MD, RDMS
Pat Fulgham, MD
Charlotte Henningsen, MS, RT, RDMS, RVT
Adam Hiett, MD, RDMS
Lars Jensen, MD
Anthony Odibo, MD
Steven Perlmutter, MD
Olga Rasmussen, RDMS
Deborah Rubens, MD
Khaled Sakhel, MD
Shia Salem, MD
Jay Smith, MD
Lami Yeo, MD

AIUM
Lin Diacon, MD
Judy A. Estroff, MD
David M. Paushter, MD

SRU
Teresita L. Angtuaco, MD
Rick I. Feld, MD
Francisco A. Quiroz, MD
Mitchell E. Tublin, MD

SPR
Leann E. Linam, MD
Henrietta K. Rosenberg, MD
Dayna M. Weinert, MD

Renamed 2015
References


