STATISTICAL CONSIDERATIONS
Al.1. BACKGROUND

This appendix provides the statistical basis for presenting output data. This appendix relies
heavily on the treatment given by Ziskin (1993).

Statistical methods can be very helpful in allowing for the determination of the most probable
value or values of a quantity from a limited group of data. That is, given an experiment and the
resulting data, it is possible to assess which value is the most likely to occur if the experiment is
repeated.

However, a statistical evaluation cannot improve the accuracy of a measurement. The laws of
probability utilized by statistics operate only on random errors and not on systematic errors. The
systematic errors must be small compared to the random errors if the results of the statistical
evaluation are to be meaningful.

The need to estimate population parameters from sample data stems from the fact that it is too
expensive and/or not feasible to enumerate complete populations to obtain the required
information. Statistical estimation procedures provide the means to obtain estimates of
population parameters with desired precision.

Statistics is concerned with the theory and methodology for drawing inferences that extend
beyond the particular set of data examined. Sample data are observed (or measured) in order to
make inferences or decisions about the population from which the samples are drawn.

Two different types of estimates of population parameters are of interest: point estimates and
interval estimates. A point estimate is a single number used as an estimate of an unknown
population parameter such as the mean. Although any single point estimate is intended to be the
true value, it will most likely deviate from it to some extent. It is thus necessary to have some
measure of the error that might be involved in using this point estimate.

An interval estimate of a population parameter provides two values between which the (point
‘estimate of the) parameter lies with a specified degree of confidence. There may be a high degree
of confidence or very little confidence that the population parameter is included in the range of
the interval estimate, so it is necessary to attach some sort of probabilistic statement to the
interval. This is achieved by specifying confidence intervals and tolerance intervals. A 95%
confidence interval specifies the range of values within which the mean (or some other
population parameter) can be expected 95% of the time. A tolerance interval is used when the
range of values in a population is of more interest than the average value. Statistical tolerance
limits furnish limits between which we may confidently expect to find a given percentage of the
individual values in a population.

PRACTICAL IMPLEMENTATION

Example 1: Measurement of Ultrasonic Power

In the way of an example of how the preceding principles can be applied in ultrasonic
exposimetry, consider the measurement of acoustic power, P, using the radiation force technique.



The complete procedure requires the following steps:

1. Calibration of the radiation force balance
Performance of repeated measurements of power
Adjustment of data for correctable systematic errors
Calculation of random uncertainty (U;)

Calculation of systematic uncertainty (Us)

Calculation of total uncertainty (Ur)
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Presentation of measured value in the form: P = x + Ut

where X is the sample mean

Calibration of Radiation Force Balance

Any calibration should be performed in a manner such that it is traceable to a national standards
laboratory. A minimum of ten independent measurements of power output from the standard
source should be performed at a minimum of two frequencies within the bandwidth of the
ultrasonic systems for which power measurements are sought. Independence is defined
operationally to mean that the entire set-up, measurement, and shut down procedures be utilized
each and every time the measurement is made. This requires that between each measurement, a
complete disassembly and start up of the measurement system be performed in accordance with
the customary procedures at the start and end of the daily workday routine.

In accordance with the above guidelines, ten independent measurements are made of the NIST
power standard source using a radiation force balance. The experimental procedure for setting up
and using the reference source must be scrupulously followed according to the directions
~provided by NIST to ensure that the systematic uncertainty of the source will not exceed the
specified value of +4%.

Next, the reference power source is set to produce a specified output, say 1.000 watts at a
specified frequency. Measurements obtained using the radiation force balance are shown in Table
A-1. The mean value, 1.024 W, is larger than the presumed true value of 1.000 W. This
constitutes a systematic error, but one that is correctable. Each power measurement will need to
be multiplied by 1.000/1.024 = 0.9766 to compensate for the +2.4% bias. The corrected values
are shown in Table A-1. From this point on, the original values are ignored, and consideration is
given only to the corrected values. The mean value is now equal to the "true" value. The standard
deviation (Sy) is given by:

A-1




The coefficient of variation, 0.0299/1.000, indicates a balance precision of 3.0%.

Performance of Repeated Measurements of Power

Having calibrated and characterized the measurement system, the radiation balance is now used
to measure the power output of a transducer of interest. The frequency and operating controls are
held constant. A number, say 5, repeated measurements are made. As described in the calibration
procedure, a complete system disassembly and set-up is performed between measurements. The
five measured values and their corrected values are listed in Table A-2, along with their mean
and standard deviation.

Calculation of Random Uncertainty

The random uncertainty is computed using the following equation:
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where t 975 is the value for a two-sided 95% confidence coefficient. The appropriate value of t 975
for a sample size of 5 is obtained from Table A-3.

For comparative purposes, U, may be divided by the mean, 2.133 W, to express the uncertainty in
terms of per cent. Then,

A-3

U, = 0—'1@) 100 = 6.37%
2.133

Calculation of Systematic Uncertainty

The total systematic uncertainty includes the systematic uncertainty specified by NIST (+4%)
plus any non-corrected systematic error introduced at the measuring site. In this example, it is
assumed that the only non-corrected systematic error at the measuring site is that which occurs in
reading the balance scale. If the smallest scale division is 0.01 W, then a reasonable estimate of
this systematic error is + 0.002 W. The systematic error due to the reference source (as provided
by NIST) is + 4% times the mean value; that is + (.04) x (2.133) = 0.085 W. Because there is no
reason to suspect that any value would be more likely to occur than any other within their ranges
of uncertainty, it is reasonable to assume that both of these systematic errors are uniformly
distributed (rectangular distribution). Therefore, the overall systematic standard deviation is
computed as
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where a; and a; are the semiranges for the rectangular distributions. The total systematic
uncertainty, Us is given by

A-5
Us = 1.96 o,

for a 95% confidence level. However, if U is computed using equations A4 and AS in the
present example, the value of Us (1.96 x 0.049 = 0.096 W) exceeds the sum of the individual
semiranges (0.002 + 0.085 = 0.087), and is excessively pessimistic. Therefore, in this case, the
total systematic uncertainty is computed as the sum of the dominant term (0.085) and the
uncertainty associated with the remaining non-dominant terms (1.96 v [(0.002)%/3] = 0.0023)
[Harris and Hinton, 1984]. Thus,

A-6
U, = 0085 + 0002= 0087 W
or, in terms of per cent,
A-7
Us = (Q_Oﬂ) 100 = 4.1%
2.133
Calculation of Total Uncertainty
The total uncertainty is the quadratic sum of the random and systematic uncertainties. Thus,
A-8
Ur = J UL+ U = |(0136) + (0.087 ]
= 0161 W
or in terms of percent
A-9
0.161
= |=—=1|:100 = 76%
Ur (2.133) ’

Presentation of Power Measurement

The ultrasonic power output of the transducer should be specified in the format: P =X + Ur.
That is,



A-10
Ultrasonic Power = 2.13+ 0.16 W (95% C.I)

Example 2: Measurement of the Power Qutput of a Transducer Model

A frequent requirement for ultrasound equipment manufacturers is to specify the acoustic output
of a physical quantity for an entire transducer model in production. In this case, the pertinent
parent population is the set of all existing transducers of this model and all such transducers that
might be produced in the future. From this presumed infinite population, a sample of n
transducers is drawn, and r repeated measurements are obtained on each unit.

Table A-4 shows the power measurements obtained on a sample of 4 transducers (n = 4). Six
repeated measurements are made on each transducer (r = 6). All of the procedures enumerated in
the previous example are assumed to have been performed for the present measurements.

The basic concepts to be applied in this case are discussed in the following section on repeated
measurements, in which all measurements are assumed to be independent and normally
distributed.

Repeated Measurements

When multiple measurements are made on each transducer, the overall variability contains
contributions from both the transducer variability and the inherent variability of the measurement
system. The standard deviations corresponding to each of these two sources of error, as well as
the overall standard deviation, can be estimated from the data in the following manner. For r
repeated measurements on n transducers, calculate the mean, m;, and the standard deviation, S;,
for each transducer. The overall standard deviation, S, is the standard deviation computed from
the n transducer mean values. It is related to the standard deviation due to inter-transducer
variability, Sy, and the standard deviation due to measurement error, Speas, by

A-11
2
Sx — \/ St%c + S meas
r
Smeas is calculated using the transducer standard deviations in the equation:
A-12
Smeas =
and S is then
A-13
2
S x - S f' - Smeas



The overall mean, x, is the mean of the n transducer mean values. It and the overall standard

deviation, Sy are used in the equations for computing the confidence and tolerance intervals. The

number of degrees of freedom is n-1 in both computations, since Sy is computed from n values.

It should be noted that by measuring more transducers, the confidence interval as well as the

measurement error will decrease in size proportional to v/n, but the tolerance interval will

approach a constant width representing the inherent inter-transducer variability.

Returning to the example in Table A-4, the mean and standard deviation are computed for the 6

values for each transducer. The overall mean, x, is the mean of the individual means. That is,
A-14

72+85+76 +62

x = = 73.75mW
4

The overall standard deviation, S, is the standard deviation of the 4 transducer values. That is,

A-15

n
> m—n-3
i=1

n-1

\/ (72)+@85)'+ (76 ) + 62)" - 4. (73.75)
N 4-1

= 954 mW

The variability due to the measurement technique is quantified by the measurement standard
deviation, Syeas. That is,

A-16
& s? \/(13.34 ) H(7.77 ) +(9.88 )’ +(8.22 )
Smeas = Z - =
i-1 N 4
= 10.04 mW
The standard deviation arising from the inter-transducer variability is computed as
A-17
meas 10.04)°
Stx = SJZC'ST = \/(954)2-(—6——)—

= 86ImW



The random uncertainty, Uy, is

A-18
S, 9.54
Ur = togs—— = 3.18—F—
975'\/}1_ \/4—
= 1517 mW

where 3.18 is the value for t for 3 degrees of freedom at the 95% confidence level.

For this example, the systematic uncertainty, Us, will be assumed to be approximately the same
as in the previous example. That is, Us = 4.5%, or in absolute terms,

A-19
U, = 4.5%-x = (0.045)(73.75) = 10.69 mW
The total uncertainty, Ur, is then
A-20
Ur = JUIU? = (1517 +(10.69)
= 1856 mW
The power output for this transducer model should be reported as:
A-21
Power = x+ Uy = 73.75 +18.56 mW
=74 £ 19 mW (95% C.L)

where the final value has been rounded off to the precision appropriate for the measured values.

Equation A-21 is a statement about the average output for this transducer model. It is also
possible to provide an upper 95% tolerance limit for some proportion, say 99%, of the transducer
units in this model. This is computed with the appropriate one-sided tolerance coefficient (Table
A-5) to obtain a tolerance limit pertaining to the random error.

A-22
X S X+ KoS, = 73.75 + (7.04)(9.54)
< 73.75 + 67.16 = 140.9 mW

To obtain an upper tolerance limit incorporating systematic uncertainty, the systematic
uncertainty will have to be quadratically added to the value of K 99S . The correct upper
tolerance level is then given by,



A-23

73.75 + (K9S ) + U?
< 7375 + +/(67.16 )* + (10.69 )

=
A

<12mWw

Thus, we can be 95% confident that 99% of the transducers will have power levels below 142
mW.

This example shows the value of making repeated measurements. Equations A-16 and A-17
show that the variability due to the measurement technique (Smeas = 10.04 mW) was greater than
the variability amongst the transducers (S = 8.61 mW). By making the repeated measurements,
the measurement component of the overall variation was reduced by a factor of 16. The resulting
overall standard deviation (Sx = 9.54 mW) was made less than that of the measurement system
standard deviation (Smeas = 10.04 mW).

Example 3: Measurement Of The Power Output Of An Ultrasound Scanner

An ultrasound scanner consists of a console plus one or more transducers. A frequent
requirement for ultrasound equipment manufacturers is to specify the acoustic output for an
entire production line of a console-transducer combination model. In this case the pertinent
parent population is the set of all existing console-transducer combinations of this model and all
such scanners that might be produced in the future. From this presumed infinite population, a
sample of p transducers and q consoles are drawn. Each of the p transducers is tested with each
of the q consoles for r repeated acoustic power output measurements. This arrangement is called
a two-way crossed analysis of variance with repeated measurements.

In this analysis it is assumed that the consoles and transducers are independent and that all
repeated measurements are independent. It is also assumed that all preliminary steps, such as
correcting for systematic errors, have been performed as described previously in example 1.

Table A-6 shows the set-up for analyzing r repeated measurements for each of the pq console-
transducer combinations. For the sake of brevity, the r individual power measurements for each
combination (xijx) are not shown, only the mean (m;)) and standard deviation (sij) are given.

The mean for each transducer i is given by:

A-24

>3
m; = - .
i q = ’ny

and the value is placed in the rightmost column at the appropriate level. Similarly, the mean for



each console j 1s given by:

A-25
>3
m, = —)>m,
J p =Y
The overall mean m is given by either of the following equivalent expressions:
A-26
mo= 3y ) )
m = _ mi_ = — mi~ = — m._.
Pq i1 j=1 ’ P iz q =i ’

Standard deviations are handled in a manner similar to that of means. The standard deviation of
the r repeated measurements in the ij™ cell (sij), is given by:

A-27
(xl/k - m//)_
S — k=1
Y r—1
The total standard deviation relative to the transducer means is:
A-28
r N
m —m
o B
1. p _ 1
and the total standard deviation of the console means is given by:
A-29

The above values are utilized in the calculation of the measurement standard deviation (Seas),
the transducer standard deviation, (Syans), the console standard deviation (Sconsole), and the overall
standard deviation (Sy). The measurement standard deviation (Syess) is the square root of the
average variance of each cell, and represents the intrinsic variability of the measurement process,
per se. It is given by



A-30

S meas -

1 P 9 >
28,
p q i=l j=I

The variability due just to transducers is expressed in Sy.ns Which is given by:
A-31

2 1

SII‘(IH\ = Sl‘ o r q SI”ULI.\‘

The total variance about the transducer means (S;?) contains two components: one due to the
measurement process (Smeasz) and one due to variability of just the transducers (Stransz). Stransz 18
given by:
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2 2 1 >
Slrun.\ - S,_ I q S meas
Similarly, the variability of just the consoles is given by:
A-33
2 S2 _ L 2
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The total variability of the measurements is the sum of the three sources of variability; that is

A-34

2 2

2
Sx = Slr'un.v + S('on.\ +

meas

Sy 1s the estimate of the standard deviation of the parent population of all output power
measurement values. However, the standard deviation of the measurement mean of a sample
containing r repeated measurements, p transducers and q consoles is

A-35

2 2 b
S - = & + §_’ - S meas
A P q rpq

Sxhas DF = 1pq - 1 degrees of freedom, and (S;) has DF = pq - 1 degrees of freedom.

The overall mean (; ), the standard deviation of the mean (S;), and its degrees of freedom are
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used to compute the confidence interval. The overall mean (71 ), the standard deviation of all x;jx
values (Sy), and its degrees of freedom are used to calculate the tolerance interval.

Table A-7 shows the results of 6 repeated power measurements for each of the 12 console-
transducer combinations. Each cell shows the mean and standard deviation of the six
measurements. The transducer means are calculated using equation A-24. That is,

A-36
1 q
mo= —d>m, = (T2+62+64+68/4 = 6650
q =
1 q9
m.o= —Ym, = (15+57+76+61)/4 = 67.25
q J=
1 q
m.o o= —dm, = (@A5+52+49+51)/4 = 4925
J=
The console means are calculated using equation A-25.
A-37

D
m,1=l dmy =72 + 75 + 45 / 3 = 6400
i=1

p
m,2=l m,=(62 + 57 + 52) / 3 = 57.00
i=1
1 4
my=—Ymy; =064 + 76 + 49) / 3

i=1

63.00

P
m,4=l dYm, =68 + 61 + 51)/3 = 60.00

P ia
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The overall mean is equal to the average of the transducer means (and also the average of the
console means). That is

A-38
= 1 &
m=— m, =(66.51 + 67.25 + 49.25) / 3 = 61.00
P o
The total transducer standard deviation is given by equation A-28. However,
for computational purposes, it is also given by:
A-39
Z =2
o 2.~ pm _ [6650° + 67257 + 4925* — 3-(61.00)°
g p -1 3-1
= 10.18
Similarly, the total console standard deviation is:
A-40

64.00° + 57.00° + 63.00>° + 60.00° - 4-(61.00)°

q , =
Zm_j —gm \/
J=1 _

T g -1 4 -1
= 3.16
The measurement standard deviation (Speas) is given by:
A-41
1 P q 2
Smeas = T Si'
Pq UZ:‘ Y
1
= \/3—1(13.34’- + 7777 + 5.73% + 8227 + 469 + ... + 4.732

= .77

The standard deviation due to just transducer variability (Sians) is given by
equation A-31:
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2 1 5 7.77°
= - — =./1018" - = 10.06
Strans J sl. rq Smeas \/ 6 . 4
The standard deviation due to just the console variability is
A-43:
2 e 7.77°
- - = 3162 — = = 258
Scons J S J rp Smeas \/ 6-3
The standard deviation of all the measurements (Sy) is equal to
A-44
S, = S * S + P = 410067 + 258 + 777
= 1297

The standard deviation of the measurement mean, sometimes called the standard error of the
mean is given by:

A-45
Soans . Sone 8o 1006° 258 7.77?
S = + + = + +
* p q rpq 3 4 6-3-4
= 6.02
The random uncertainty is given by:
A-46
U, = tgsrs. = (220)(602) = 1324,
where 2.20 is the value of t for 11 degrees of freedom at the 95% confidence level.
For this example the systematic uncertainty will be assumed to be the same as in the two
previous examples. That is, us = 4.5% or, in absolute terms,
‘ A-47

u, = 45% m = (0045 (6100) = 275

The total uncertainty, ur, is:
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A-48

u = ul+ = 13242 + 275 = 1352

Thus, the power output for this production line of ultrasound scanners should be
reported as
A-49
Power = m* u, = 6100 % 1352
= 61+ 14 mW (95% C.1),

where the final value has been rounded off to the precision appropriate for the measured
quantities.

The upper 95% tolerance limit is given by the product of the overall standard deviation of all
measurements and the appropriate value of K selected from table A-5 with the associated degrees
of freedom. For 99% of measurements to be below the upper 95% tolerance limit, use K.go with
DF =rmpq-1 = (6-3-4) - 1 = 71. Since a value for K.g9 for 71 degrees of freedom is not
given explicitly in Table A-5, it must be interpolated as follows:

A-50
99 - 71
Koy = Ky(99) +( m) [K.99(49) - K.99(99)]
= 268 + 0.56 (2.86 -2.68) = 278
The upper tolerance limit is thus expressed as
A-51
Power < m + \/(Kgg -5, + U
< 61.00 + \/(2.78 . 12.97)2 +275% = 972
Thus,
A-52

Power < 98 mW
where the upper limit has been rounded upward to the precision appropriate for the measured

quantities. Therefore, we can be 95% confident that 99% of all console-transducer combinations
of the test model will have acoustic output powers less than 98 milliwatts.
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TABLE A-1
CALIBRATION OF RADIATION FORCE BALANCE

Measured Values Corrected Values
(watts) (watts)
1.03 1.006
1.00 0.977
1.03 1.006
1.05 1.025
1.06 1.035
0.98 0.957
1.03 1.006
1.07 1.045
1.00 0.977
0.99 0.967
Mean 1.024 Mean 1.000

Std. Dev. 0.0306 Std. Dev. 0.0299
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Mean

Std. Dev.

TABLE A-2

MEASUREMENT OF ULTRASONIC POWER

Measured Values Corrected Values

(watts) (watts)

2.12 2.070

2.34 2.285

2.07 2.022

2.26 2.207

213 2.080
2.184 Mean 2.1328

0.1119 Std. Dev. 0.1093
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TABLE A-3

95% and 99% Confidence Coefficients (Two-Sided)

Sample Size Degrees of 95% Confidence 99% Confidence
(n) Freedom (DF) Coefficient Coefficient
(tors) (t.995)
2 1 12.71 63.66
3 2 4.30 9.93
4 3 3.18 5.84
5 4 2.78 4.60
6 5 2.57 4.03
7 6 2.45 3.71
8 7 2.36 3.50
9 8 2.31 3.36
10 9 2.26 3.25
11 10 2.23 3.17
12 11 2.20 3.11
13 12 2.18 3.06
14 13 2.16 3.01
15 14 2.15 2.98
16 15 2.13 2.95
17 16 2.12 2.92
18 17 2.11 2.90
19 18 2.10 2.88
20 19 2.09 2.86
21 20 2.09 2.85
22 21 2.08 2.83
23 22 2.07 2.82
24 23 2.07 2.81
25 24 2.06 2.80
50 49 2.01 2.68
100 99 1.99 2.63
) 0 1.96 2.58
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TABLE A-4

POWER MEASUREMENTS ON FOUR TRANSDUCERS
(Values are expressed in milliwatts)

TRANSDUCER
A B C D
64 78 75 35
72 91 93 66
68 97 78 49
77 82 71 64
56 85 63 70
95 77 76 68
MEAN 72 85 76 62
STD. DEV. 13.34 7.77 9.88 8.22

Overall Mean (the mean of all 24 values) = 73.75 mW
Overall Standard Deviation = 9.54 mW

Power = 74+ 19 mW (95% C.1)
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TABLE A-5

95% Tolerance Coefficients (one-sided)

P = Percent of Population Values Below the Upper 95% Tolerance Limit

Degrees of P=90% P=95% P=99%
Sample Size Freedom
(n) (DF) (K.90) (K.os) (K.99)
2 1
3 2 6.16 7.66 10.55
4 3 4.15 5.14 7.04
5 4 3.41 4.20 5.74
6 5 3.01 3.71 5.16
7 6 2.76 3.40 4.64
8 7 2.58 3.19 4.35
9 8 245 3.03 4.14
10 9 2.36 291 3.98
11 10 2.28 2.82 3.85
12 11 2.21 2.74 3.75
13 12 2.16 2.67 3.66
14 13 2.11 2.61 3.58
15 14 2.07 2.57 3.52
16 15 2.03 2.52 3.46
17 16 2.00 249 342
18 17 1.97 245 3.37
19 18 1.95 242 3.33
20 19 1.93 2.40 3.30
21 20 1.90 2.37 3.26
22 21 1.89 2.35 3.23
23 22 1.87 2.33 3.21
24 23 1.85 2.31 3.18
25 24 1.84 2.29 3.16
50 49 1.65 2.06 2.86
100 99 1.52 1.92 2.68
) ) 1.28 1.65 2.33
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TABLE A-6

p transducers

SETUP FOR <q consoles

r repetitions

CONSOLE
i=1,2,..,q9
1 2
1 myy, S11 my2, Si2
TRANSDUCER 2 mj1, S31 mys, S22
i
i=1,2,...,p .
|y l’l’lpl, Spl maz, ng
I m. l- m., I

—

ij™ cell mean

i™ transducer mean

j™ console mean

overall mean

variance of ij™ cell

total variance of transducer

total variance of console

rk=1
1 &
m = ;;my
1 &
- 1] &d
m = E;;my
, 2
s; = k=1(xyk m,j) /(r—l)
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TABLE A-7

Power Measurements Of 12 Console-Transducer Combinations

(milliwatts)

CONSOLE
1=1,2,3.4 (q=4)

1 2 3 4
64 77 55 64 63 71 73 66
72 56 66 70 66 59 55 64
68 95 49 68 53 72 72 78
1
MEAN = 72 MEAN = 62 MEAN = 64 MEAN = 68 m,. = 66.50
STD DEV = 1334 | STDDEV =822 | STDDEV =727 | STDDEV =8.12
TRANSDUCER 68 8l 51 54 75 93 70 56
87 N 62 57 78 71 68 52
i=1,23 75 67 55 63 63 76 57 63
(p=3) 2
MEAN = 75 MEAN = 57 MEAN = 76 MEAN = 61 m,. = 67.25
STDDEV =777 | STDDEV=4.69 | STDDEV =983 | STDDEV=7.16
48 55 5249 55 39 46 49
39 42 50 54 40 52 51 60
44 37 53 54 48 60 50 50
3
MEAN = 45 MEAN = 52 MEAN = 49 MEAN = 51
STDDEV =988 | STDDEV=210 |STDDEV=834 | STDDEV=473 §m; =49.25

Overall mean = 61.00 mW
Power = 61+ 14 mW (95% C.1.)
Power < 98 mW (95% T.1.)
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